APPLICATION NOTE

Curve Fitting for Spice Device Modeling
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Curve Fitting Applying Regression Analysis

Fitting a line to measured data is a common task for modeling engineers.

The fundamental tool is the so-called 'Linear Regression Analysis'.

This means to fit a straight line, represented by equation y=y0 + m*x, in the best way to (a range of)
measured data, as depicted below:

Fitting a Line to Measured Data L0

yl

Yi

y-intercept YO

d

8 sConsult -2-

The formulas given below explain how to calculate the slope and the y-intercept of the fitted line from the
measured data (xi/y;).

The Linear Regression Analysis Formulas

ix, ZN:y, N- ix, Y,

Slope m= i=1 i=1 > i=1

Sx] N3

1
y-Intercept yo=3

N 1 N
RS _N'(ZXJ
Regression Coefficient  r?=m?*. i: 1 i: 2
(a measure of fitting quality) Z,Y? B ! ' (;yiJ
8'5)(,,3.9.rlsult -3-

Also given is the formula for the 'Regression Coefficient' r?
This coefficient is a measure for the fitting quality:

> if r’=1, then all measured data would lie exactly on the fitted line.

> If r’=0, then the measured data represented a cloud: no line can be fitted.
Typical values of r* for typical measurement data are in the range [0.95 ...0.99].
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Example: DiOde DC MOdEIing The simplified diode model equation:

\"
i=1S-exp| ——
' Xp(N~vtj

’ . 1 converted logarithmically
4 . 1

f | | HT)

vO + m - X

LOG(i) [A]

measured
1decade \

!

straight line equation: Y

| L1 | L1 YI XI
06 08 10 \]
—_—> Lin.Regr.Analysis
vVl N
yO m r?

The Measurement Setup:

5
- 'Y DC

a measure of the fitting quality
gst;gnsult 4

Shown above is a quick example of regression analysis: the modeling of the DC current of a diode in
forward bias. This is at the same time also an example of how the simple linear regression formulas of the
slide before can be applied also to non-linear fitting problems.

The diode model equation is

v
i=ISx*|e -1
| ( Xp(N*th ] (1)

Provided v>0, i.e. neglecting the term ( -1) in (1), and applying a LOGyo conversion, gives:

Vv
LOGli)=LOG1o(IS) + LOG,gle
10() 10( ) N * vt 10()
or
1
LOG,o(i)=LOG((IS)+ ————
10(0) 10 )+2.3*N*vt*v (2a)
This can be interpreted as a linear equation of the form:
y =y0 +mx*Xx (2b)
what means, we have to substitute:
y = LO0Gi (i) (3a)
y0 = LOGio (IS) (3b)
m=[1/ (2.3 N vt)] (3¢c)
X =V (3d)

This substitution corresponds to the required manipulations for the measured data:
after the logarithmic conversion of the measured values of the diode current 'i' following equ.(3a),

© Franz Sischka
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they are introduced together with the unmanipulated values of the diode voltage 'v' (see equ. 3d) into the
regression equations of the previous slide, as y;- and x;-values.

The regression formulas return the y-intercept 'y0' and the slope 'm' of the fitted line.

To finally obtain the Spice parameter values, we have to solve equ. (3b) for the diode model parameter 'lS'
and equ. (3c) for 'N', and obtain:

IS = 10Y°
and
N = 1/ (2.3 m vt)

with the temperature voltage
vt = 8.6171E-5 * (TEMP['C] + 273.15)

what are the Spice model parameters for the blue fitted line in the slide above.

Back to Top
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Example: Diode CV Modeling
The diode CV model equation for v<O0 is:
0 CJo
El, = W
bd | 45 V
1-
°l. ( VJ)
fitted line log. conversion
35
. ‘LOGe(c,) = ‘LOGe(CJO)' - M *‘LOGe[1 -v/ V)J ]
2 measured | 1 | ||
Y S ST AP I This equation can be brought to the linear form
-2.0 -15 -1.0 -0.5 0.0
when substituting: | j (@)
y =LOG(c) |
The Measurement Setup: \e'/ X= LOGe[1 -v/ VJ] (b)
C-349fF /m (c)
V=-0.5V ) : =
Low High y'\l ;' yO LOGe(CJO) (d)
Lin.Regr.Analysis
= 5 OJ v \rz
L *.K.* — | yOm
— :
M &5Const -0

Although the target formula for the voltage-dependent diode capacitance is even hyperbolic in this
example, we once again apply the linear regression fitting:

» the stimulus voltage values v][i] are converted following equation (b),

» and the measured capacitance values Cs[i] following equ. (a).
The problem of fitting three unknown model parameters ('CJ0', 'VJ' and 'M') to a linear equation with only
2 parameters ('y0' and 'm') is resolved by knowing that the parameter VJ lies usually between
~0.3 < VJ < ~1, and by considering the value of the regression analysis fitting coefficient r? (!).

Beginning with a starting value for 'VJ', e.g.. 0.3V, we populate the two data arrays x[i] and y[i] with the
measured data, following equations (a) and (b), and introduce these arrays into the linear regression
formulas. Then, we obtain a slope value m(VJ) and an y-intercept yO(VJ) for the current value of VIJ.

As mentioned, we also regard the fitting coefficient r°. All three values of m, yO and r? are stored.

Next, VI is incremented to e.g. 0.31V. Then, the same data transform is applied once again to the
measurement data v[i] and c[i] , and another regression analysis is performed.
From that we get another triplet of coefficients m[VJ], yO[VJ], and r?[VJ].

This process is iterated until the best fitting coefficient r? is obtained, corresponding to VJ_opt, m(VJ_opt)
and yO(VJ_opt).
A final re-substitution gives:

from (c): M = -m[V)_opt]
from (d): CJ = exp (yO[VJ_opt])
Back to Top
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Example: S-Parameter Circle Fitting

NOTE: S-Parameters can be represented segment-wise by circles, centered to y=0.
This allows to -once again- apply a linear regression analysis for their modeling.

S11

The equation for a circle centered on the real axis to x=x, is:

(x- X2 +y? = 12

or re-arranged: e
2 42 2 2 4 DFy ¥ fitedline ./~ eured
X2 +y2 = r2 -x2 + Xy *X i T
| J 1\ J
— ) Yy

This again can be interpreted linearly as

Yin = yo + m *x

with the following substitutions: l
Yin = X2 +y? (a)
The Measurement Setup: — Xin =X (b)
NWA@ yi" 7 v m =2 %X (c)
A P2 Lin.R\egr.A‘/nalysis yo =% -x? (d)

— A H o ZN Z
< y‘w &eConsul -6-

This looks like a very exciting example: fitting a half-circle by applying linear regression !

How to proceed:
from the measured S-parameter values x[i] =REAL(Sxx[i]) and y[i]=IMAG(Sxx[i]), we get the Yiin values after

equation (a), and the values x[i]=REAL(Sxx[i]) become xlin values after (b).
Again, a linear regression fit is performed.

From the slope 'm' and y-intercept 'y0' of the fitted line, we obtain the circle specifics
- location of circle center on the x-axis:

x, =m/2 from equation (c)

- and circle radius:
r = SQRT(y0+x,?) from equation (d)

See the blue fitted line in the slide above.

Back to Top
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Visual Model Parameter Extraction
- Converting the Measurement Result into Parameter Plots -

The Measurement Setup:
The Basic Idea 54
. v
Example: Diode DC
With the assumption of v>0.1V, v
the diode model equation is i=IS-exp| —— /
N'Vt 2 1E-1§\\\ T T
— | 1E2F
= | ek
When the measured DC data are plotted semi- c:e 1E-4L ;"aet:s“'ed
logarithmically, i.e. 'LOG(i)' vs. 'V', as on the right, o | 1E5F
the y-intercept of a fitted line represents the - 3 e
model parameter 'IS', while the parameter 'N' is il SoPe M=o Nt
represented by the slope, as depicted. 1E9F
1E'1°é line fitted to 2 data points
By plotting the y-intercepts and the slopes of all 11:11;
measured data points (x;/y;) versus -again- the 1E-13E-
stimulus voltage 'v', the valid parameter extraction 1E-14€ e—— y-intercept: y0=IS
range is represented by constant parameter values, ST o0 a0 00 800
as shown in the next slide.  —
v[V]
g)"sﬁgpsult -2-
0A 1E3g
Example: BT 1E4E
21 1e6t
Visualized Diode DC Parameters £ i
e N
1E-12F
1E-13F
1E-14F
< EE 1512 IS extraction range
ey AP
= | B3¢ 1E-1g S b o
S | 1eal 00 02 04 06 08 10
O |.esb E———
o | &5k v[V]
-1 1E-6L
1E-7E Z A20
1E8E N i
1E-9L £ T15
S[R(E— qE’ 3
enD RS g 10
1E-12F S sf N extraction range
1E-13 ; E E 1
1E-14,§'(—‘ y-intercept: yO=IS ’ oF
R T T T 5f
_ﬁ L
v[V] PN S D I
00 02 04 06 08 10
—_—>
v[V]
Ssﬁg_nsult -3-

For the example of a diode the above slide shows the result of visualizing the DC parameters 'lIS' and 'N'.
The big advantage of this modeling method is a clear indication *where* the model and its parameters are
valid for being extracted (applying a mean value from the red boxes depicted in the slide above).

In other words: the Spice model parameter extraction itself is a simple mean value calculation from the
parameter values within the flat range, as sketched above.

© Franz Sischka
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How to perform the parameter visualization:

Performing visual parameter extraction only requires a program loop across all measured data, providing
the slope, the x- and the y-intercept as a function of the stimulus 'x'.

4

The Three Fundamental Equations

The equation for a straight line is: Yis1

Yi
y=y0+m-x m
|

When fitting this line to two /

' %0, BN, >x
data points (x; / ), (X1 / Vis1), Yia — Vi i X
its slope is: m, =——
Xipg = X
its x-intercept x0; is: )(0i = X Yir = Xi1 Y
Yin =Y,
X..-V.—X -V
and the y-intercept yO;: y0, = i1 Yi i Yt
Xip1 = X

gkggnsult -4-
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Example: Early Voltage VAF of Bipolar Transistors

Example:

Early Voltage VAF of Bipolar Transistors

VCE [V]

TH 55,
‘4 :
The Early Voltage is represented 3
by the x-intercepts of tangents F
fitted to the DC output characteristics. o
The visual parameter extraction gives 1;
a clear picture of this behavior. 0 >
VCE [V]
gkgggsult -5-

Example: MOS Transistor VTH vs. L or W

S

1E-7 1E-6

1E5 L [m]

The threshold voltage 'VTH' of MOS transistors with different device sizes,
plotted versus length 'L' or width "W', shows a characteristic trace.

Applying Visual Parameter Extraction for Model Development

e

In the first MOS models of the 1970ies, the threshold voltage modeling was done by a
single parameter 'VTH'. In other words, no dependency of the threshold voltage vs.
geometry was included.

Applying the visual parameter extraction method assisted with improving the MOS model
by replacing (in the model equations!) the single model parameter VTH by a function
VTH = f(L, W), as given by the visualized parameter plots.

gktonsult

Back to Top
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Composing Spice Subcircuits for Modeling

Composing Subcircuits for Modeling

A A

<>

o

c C

Physical Device Subcircuit Model (C) Franz Sischka, Nov. 2014

www.SisConsult.de

g;'s)ConsuIt -1-

When modeling electronic devices, the first choice is to select a model which describes best the behavior of
the physical device.

If, however, the model does not cover the measurements accurately enough, the modeling engineer has
the choice of either

» taking the source code of the model and enhance it

» or perform a modeling using a sub-circuit with a combination of standard components

And like always, there are pro's and con's:

- an enhancement of the model equations -not an easy task, but elegant- by applying Verilog code may
cause troubles related to using it in different simulators.

- sub-circuit modeling, will run in most simulators, but might sometimes be a compromise concerning
model accuracy. Nevertheless, it is an important approach. This chapter features methods about how to
compose such a sub-circuit.

© Franz Sischka
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Three Different Examples of Diode Modeling

A First Example: Standard Diode

at a given current, a higher voltage drop than what is predicted
by the modeling: —> the additional model component must be in series

LOG,(i) [A]

Diode

g;'s)gignsult -3-

The first example of subcircuit modeling refers to a standard diode in DC forward operation.

The measurement result is given in a semi-logarithmic plot, with the y-axis representing the measured
current 'LOG1q(i)' and the x-axis the stimulus voltage 'v'.

Following best-practice experience, the modeling starts at lowest bias voltage, and continues step-by-step
up to the highest bias.

As shown above, the standard model 'Diode' with its equation i=IS*exp[v/(N*vt)-1] fits the measurement
very well, up to v~0.8V. For higher bias voltage, the measured curve declines, while the so far developed
model continues with its straight line. In other words, above v~0.8V, and at a given current 'i', there is a
bigger voltage drop across the device than predicted by the standard diode model (dashed blue line).

A bigger voltage drop at a certain current means a second model connected in series with the existing one.

And, consequently, this 2nd model inside our subcircuit is a resistor (dashed green line).
The resulting model for this silicon diode is depicted above, on the right.

© Franz Sischka



-12-

A Second Example: Diode with Recombination Range in DC Forward
at a given voltage is a higher current flowing than predicted
by the modeling: _y the additional model component must be in parallel

LOG,(i) [A]

Dlow Dhigh

g's'g_g[]sult -4-

The second example is a diode exhibiting a lower slope for low bias voltage.

The modeling starts again at lowest bias voltage with the standard diode model, called 'Dlow".

For higher bias voltage, above the knee, the measured curve becomes steeper, while the 'Dlow' model
continues with its straight line: there is a bigger current (dashed green) flowing through the device than
predicted by the standard diode model (dashed blue line).

A bigger current flowing at a certain voltage means that the second model needs to be added in parallel
with the existing one.

Since this measurement region (~0.5V ... ~0.9V) is again represented by a straight line, this 2nd model is
another ideal diode 'Dhigh' (dashed green line).

Finally, at high bias voltage, the diode resistor 'R' becomes dominant, like in the diode example before.
The resulting model for this GaAs diode is shown above, on the right.

© Franz Sischka
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Third Example: Commercial Packaged Diode 1N4004:
higher voltage at a given current: —s an additional series diode
R
g 151%‘ ‘
% 1E—2;* i
gl = —
le) C
- B3
R
.15—52— v Dhlgh
% Diow
4o ‘ ‘ 10
v V]
gk@ggsult -5-

The last example in this diode series is a commercial, packaged diode 1N4004.

This time, the DC forward measurement shows a decline in slope, well before the effect of the series
resistor 'R'.

As always, the modeling starts at lowest bias voltage 'v' with the standard diode model, called Dlow.

For higher bias voltage, above the knee, the slope of the measured curve becomes lower: there is a bigger
voltage drop (dashed green) across the device than predicted by the standard diode model (dashed blue
line).

Once again: A bigger voltage drop at a certain current means to add a model segment in series with the
existing one.

Since this measurement region (~0.5V ... ~0.7) is represented by a straight line, this 2nd model is once again
an ideal diode 'Dhigh' (dashed green line).
Finally, like in the examples before, the diode resistor 'R' becomes dominant at high bias voltage.

Back to Top
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Example: Bipolar Transistor

Example Bipolar Transistor:
Quasi-Saturation Modeling with Gummel-Poon

Gummel-Poon + Gummel-Poon_saturated

40

iC [mA]

30| -

20| -

Gummel-Poon

40

iC [mA]

20

L /ﬁ \\

O“““““‘\““““‘HH A Y Y A Y
0 1 2 3 4 5 0 1 2 3 4 5

—ﬁ ﬁ
Gummel-Poon_saturated YCE V] VCE [V]

-7-

8 stonsult

The sub-circuit modeling technique can be applied to many interesting modeling problems.

The Gummel-Poon model, for instance, is known for its limited fitting capabilities in the quasi-saturation
range. However, when splitting the output characteristics of a bipolar transistor into two parallel and linked
models (overlying both Collector currents), this problem can be solved:

» afirst one (red) responsible for the output slope (Early effect),

» and another one (blue) for modeling the quasi-saturation.

See the next slide for the details.

© Franz Sischka
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Gummel-Poon Subcircuit for Modeling Quasi-Saturation

Q2.area

2 407\\\\‘\4\_\\_"\\\\‘\\\\‘\\\\
el ¢

RC_quasisat Q1 .- é.\"& . —

R
o>
Q1 Q2 Sl
Q2.Area=0...1
Q1.Area =1 - Q2.Area —>

VCE [V]

In details:

the subcircuit consists of a single Gummel-Poon model, but applied to two transistor locations (instances
'Q1' and 'Q2'), plus a resistor 'RC_quasisat'. l.e. the same set of Gummel-Poon parameters is shared by the
two transistors, but their area parameters 'Area’ are different and can be used for distributing the Collector
current among them, while resistor 'RC_quasisat' can drive 'Q2' in deep saturation.

For the modeling of iC(vCE), the instance parameter 'Q2.area' determines the transition from the quasi-

saturation to the non-saturated range, while the resistor 'RC_quasisat' affects the slope in quasi-saturation,
as depicted above.

The subcircuit in 'Spice' netlist syntax (ASCII) is:

.SUBCKT GP_and Quasisat C=1 B=2 E=3

01 1 2 3 MAIN Area = 0.6524
02 11 2 3 MAIN Area = 0.3476
RC quasisat 1 11 100

* Common Gummel-Poon ModelCard
.MODEL MAIN NPN IS=3.596E-15 NF=1.017 ISE=3.7E-15 NE = 1.509
+ BF=281.2 IKF=0.3173 VAF=25.35

.ENDS

© Franz Sischka
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In order to verify the DC subcircuit modeling also in the S-parameter domain, the slide below investigates
the effect of changing the Area and RC_quasisat parameters in the transit time modeling plot. As can be
seen on the plot on the right, it only affects the trace for highest DC biasing, what is a correct behavior. It
does not perturb the fitting in the other biasing ranges.

Gummel-Poon Subcircuit Modeling:
Transit Time and ic-vce DC Modeling

RC_quasisat

ZVArea -

Q1.Area=1-Q2Area

fagins v _«o

i § § pE § ¥
40 a0 0 W >

g [ § g2

i [E-Y

~8gtgmgsult -9-

Back to Top
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Example: MOS Varactor

This example shows the sub-circuit modeling of a MOS varactor.

r
Example: MOS Varactor
700 ', :: Cmax
E L T 1T I \' T T T T T T 1T
ed : ———— '— —— — o —— o ——— —
(& L I measurement
¥ cw)
500 : [ ————————
- JC(v) 1 1 1
,7 — +
i Ctotal Cmax C(V)
0.0 0.5 1.0 1.5 2.0 25 W|th C ( y ) _ C "

v [V] M
v
1-
VJ

8 sConsult -11-

The measurement (red) can be split into two segments: a diode CV-characteristic (blue) and a fixed,
voltage-independent range (green).

The modeling is again performed 'from the left to the right', i.e. with increasing bias voltage.
The diode CV parameter 'Cyo' is equal to the y-intercept C(v=0), 'M' fits the slope and 'V,' the range v>0.

For v>0.7V, this model would 'explode’, resulting in a short circuit.
This is prevented by adding a capacitor 'Cn,' in series, what corresponds physically to the gate oxide of the

MOS varactor.

Note: it is recommended to add a big resistor (e.g. 1GOhm) to ground between capacitance Cmax and the
Diode model, for improved Spice convergence.

© Franz Sischka



-18-

Fitted MOS Varactor

A e B B B O B

C [fF]

.SUBCKT GateOxide 1 2

Cmax 1 12 6.92E-13
Diode 12 2 MAIN
Rdummy 1 12 1E+6

500 -

*model card

.MODEL MAIN D IS=1E-30 N=1
+ CJO=3.136E-13 M=0.345
+ VJ=0.524 FC=0.95

300

g 7 T 7

.ENDS
e | O Y O Y A O A RV
0.0 05 1.0 15 20 25
—
red: measured  blue: modeled ¥ [V]
SConsul -12-

Note: Rdummy in parallel to Cmax has been added to provide a minimum DC current to the diode model
for improved Spice simulation convergence.

Back to Top
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Example: Inductor with Skin Effect

And here the last of the series of sub-circuit Spice modeling examples:

Example: Inductor with Skin Effect

Spiral Inductor Impeldance Plot

400_ T T T L B L 1 s B B B

C freqT H ]

L I i
— L I ]
z [ | .
5 2000 : i 3 LSkin
S : : .
R : : . R L
B S 1 o3
o] 1 1
° L 1 ! ]
o 1
E L i ! ] RSkin
@l o ¥ i

S :

L 1 . i ]

_100 1 1 1 1 :I 1 1 1 E:I 1 1 1 E 1 1 L L
-10 UI 10y 20 30
| REAL[ELO]
R R+Rskin
gsﬁgnsult -14-

At lowest frequencies, the model consisting of inductor L and its series resistor R fits the measurement.

With increasing frequency, the skin effect shows up as an increase of the series resistance.
This can be modeled using a series resistor RSkin, in parallel with an inductor LSkin, which shorts RSkin at
DC, and leaves it open for infinite frequency.

Back to Top

© Franz Sischka



-20-

Data Interpolation

This chapter features the fitting of a quadratic function to three data points:
y=a+b*x+c*x?

150

100

y Quadrinterpol [E+0]
g

x [E+0]

For three data points [x0, y0], [x1, y1], [x2, y2], we start with a set of 3 quadratic equations
y0=a+b*xO+c"‘xO2

yl =a+b*xl+c*x1?

y2:a+b*x2+c*x22

Goal: We need to get the coefficients a, b and c as a function of xi and yi
From (1):

a= yO—b"‘xO—c”‘xO2

(4) into (2):

yl= yO—b"‘xO—c”‘xO2 +b*xl+c*x1?

In the same way, from (3):

a=y2-b*x2-c* x22| what is the first fitting parameter

© Franz Sischka
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(6) into (2):
yl:y2—b*><2—c"‘x22+b*x1+c"‘x12

b*(xl—xZ):yl—y2+c*(x22—xlz)

yl—y2+c*(x22—x12)

b= (xl—x2)

what is the second fitting parameter (7)

Finally, (7) into (5):
* 2 2
y1=y0+(x1-x0)* y1-y2+0* (x2° - xi )+

1-x2) c* (x12 - x02)

(y1—-y0)* (x1—x2)— (x1-x0)* (y1-y2) = ¢ * (x1? —x0?)* (x1—x2) - ¢ * (x1— x0)* (x1* — x2?)

__(y1-y0)* (x1-x2)~ (x1-x0)* (y1-y2)
(x1? —x0%)* (x1-x2) - (x1-x0)* (x1* —x2?)

what is the third fitting parameter (8)

In other words:
Equations (6), (7) and (8) represent the equations
for the polynomial coefficients a, b and c.

Back to Top
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