
TwoPort Matrices and their Impact
on Device Measurements and Modeling

Abstract:
With the introduction of the S-parameters in the 1960s, the two-port theory of the 1920ies gained an
important application also in the high-frequency range, since it is able to separate the netlist components
from the overall measurements. This is a property that S-parameters alone do not provide.

Z, Y, H, A matrices, calculated from S-parameters, contribute to the accuracy of measurements and device
modeling in terms of de-embedding, device modeling and verification of the achieved fit.

This paper presents a summary of relevant relationships, applications and best practices for these matrices.
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A Bit of History

Linear Two-Port Theory
 The Two-Port Theory was introduced in the 1920ies
 Feldtkeller (University Stuttgart) introduced Matrix Annotation in 1929 (*)

(*) https://de.wikipedia.org/wiki/Zweitor#cite_note-1   (2020-11)
-2-

The classical, linear Two-Port Theory relates input and output currents and voltages by linear matrix
operations.
For example, for the Z matrix, the Two-Port is stimulated by a current source into each port, and the
voltages at the ports are measured.
For the Y matrix, the stimulation is by a voltage source at each of the ports, and the currents into the ports
are measured.
________________________________________________________________________
NOTICE:
CAUTION: the Y-matrix is not defined for an impedance-to-ground-only Two-Port like this:
o---o---o

┴
| |Z
┬

o---o---o

and the Z-matrix is not defined for a series-impedance-only Two-Port like this:
__

o---|__|---o
Z

o----------o
________________________________________________________________________



High-Frequency Measurement Problems
Drawbacks of ZYHA Matrix Theory for High Frequency Measurements:
 to measure the matrix parameters,

the Two-Port's input and output needs to be connected to ideal OPENs and SHORTs.

 at RF frequencies, OPENs and SHORTs are not ideal,
but correspond rather to inductances and capacitances.

 additionally, even when such ideal terminations would be available and applied,
the device may behave non-linear and oscillate.

______________________________________________________________________
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S-Parameters, introduced in the 1960ies, are measured
 by imbedding the device, on both sides,

into a well-defined 'Characteristic Impedance Z0',

 and by calculating the relationship of reflected or transmitted 'Power Waves'
to the incident  'Power Wave' (    Watt   ).

 This realistic impedance Z0 also reduces the chance for device oscillations drastically.

Introduction of S-Parameters in the 1960ies

AN 95  ....

S22

Application Note 95-1
S-Parameter Techniques for Faster, More Accurate Network Design
February 1967
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... and since we have been talking about history ...

In the industry, measuring S-Parameters began in the 1960ies, mainly supported by Hewlett-Packard and
the introduction of its Network Analyzers. Corresponding publications appeared in the HP Technical
Journal, and also by Application Notes. Above, on the right, is a screenshot of the 1967 HP Application
Note 95-1.
In 1997, this highly recommendable Application Note has been completely updated by HP, covering S-
Parameters from introduction up to expert level.
It is available at
http://www.agilent.com/find/eesof-an95-1   (as of Dec.2020).

Back to Top



Overview Matrix Conversions

Pre-Requisite:
- Z0, the characteristic impedance
of the S-parameter measurement,
is identical on all ports, and Z0 = REAL

Notice:
- E is the identity matrix.
It can be calculated the easiest way
from any N-Port matrix
by setting it to exponential 0:
E = (Any_N_Port_Matrix)0

Z/1Y 
Z to Y Matrix  Conversion:

Y/1Z 
Y to Z Matrix  Conversion:

CONVERTING THE EASY-TO-MEASURE S-PARAMETERS
TO CLASSICAL MATRICES
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These formulas convert matrices with any number of ports.
Special acknowledgements  to Dave van Goor and Luuk Tiemeijer, NXP Eindhoven  (March 2007)
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



S to Z Matrix  Conversion:

EZZ
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

Z to S Matrix  Conversion:

 SEZ
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

S to Y Matrix  Conversion:
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0
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

Y to S Matrix  Conversion:

PEL Programs for IC-CAP Users:

Path2Data="/myModel/myDut/mySetup/mySpar_Output"

!S to Z
!=========================================
Z0 = 50
tmpS = DATASET("quiet "&VAL$(Path2Data))
E = tmpS^0 !define an identity matrix
tmpZ = Z0*(E+tmpS)//(E-tmpS)
RETURN tmpZ

!Z to S
!=========================================
Z0 = 50
tmpZ = DATASET("quiet "&VAL$(Path2ZData))
E = tmpZ^0 !define an identity matrix
tmpS = (tmpZ-Z0*E)//(tmpZ+Z0*E)
RETURN tmpS

!S to Y
!=========================================
Z0 = 50
tmpS = DATASET("quiet "&VAL$(Path2SData))
E = tmpS^0 !define an identity matrix
tmpY = 1//Z0*(E-tmpS)//(E+tmpS)
RETURN tmpY



!Y to S
!=========================================
Z0 = 50
tmpY = DATASET("quiet "&VAL$(Path2YData))
E = tmpY^0 !define an identity matrix
tmpS = (E-Z0*tmpY)//(E+Z0*tmpY)
RETURN tmpS

!Z to Y
!=========================================
tmpZ = DATASET("quiet "&VAL$(Path2ZData))
tmpY = tmpZ^-1
RETURN tmpY

!Y to Z
!=========================================
tmpY = DATASET("quiet "&VAL$(Path2YData))
tmpZ = tmpY^-1
RETURN tmpZ

S-Parameters
are measured by Network Analyzers (NWA),
within a Frequency Band.

- for Transistors and Diodes,
they do not include the DC Bias   (0Hz)
(but they are a function of the DC Bias !)

Z,Y,H,A  Matrices,
calculated from S-Parameter Measurements,
represent Device Performance for Ideal OPEN and SHORT Terminations
within this frequency band.
They do not include the DC Bias either !!!

Hence: AC-Wise OPEN or SHORT

NWA
P1 P2
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Notes About  "AC-Wise Open or Shorted":
... avoid some confusion ...

Back to Top



A Walk through the Properties of the TwoPort
Matrices and their Applications to Device Modeling

Admittance Matrix
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Definition:

The Admittance or Y-Matrix is stimulated by a voltage at each port, and the currents are measured.



Important Y-Matrix Elements:

Application:  Passive Components Modeling

= v1/i1 @v2=0
= Total Input Impedance with Port2 SHORTED

1
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= v2/i2 @v1=0
= Total Output Impedance with Port1 SHORTED
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= v1/(-i2) @v2=0
Impedance from Port1 to Port2 with Port2 SHORTED

1
Y21-

Applications:

Passive Components
Modeling

gm of  FETs and HEMTs
Alternatively, to avoid the condition of
AC-wise shorted Port2,
apply PI schematic modeling
(see further below)

Y21 = i2/v1 = gm  @v2=0
Trans-Conductance from Port1 to Port2 with Port2 SHORTED
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Important Y-Matrix Elements (cont'd):


























2

1

2221

1211

2

1
v
v

*
YY
YY

i
i

stimulatedmeasured

Y 21



Two More Y-Matrix Application Examples:

 Impedance Measurements of  Multi-Ports
 Transistor Inner PI Schematic Modeling
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Y-Matrix Application Example:

How to Calculate the Individual Branch Impedances of a 3 Port
Port1-to-Port2-Impedance Z_12
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From an inspection of
the 3-Port Y-Matrix definition:

apply a SHORT to Port2 and Port3,
stimulate a voltage at Port1,
measure the current at Port2
and calculate:

Note:
the Y-Matrix indexing is
Admittanceto from

e.g. the Admittance
from Port1 to Port2 is Y21
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  121Y
2i
1v 

Z_12

Notes:
 Compare the Y-Matrix indexing with the S-Parameter indexing:

S21: transmission from Port1 to Port2



A quick intermezzo:

HpotLcur Lpot Hcur

... this should remind us of ...

CV-Measurement of Devices With More Than 2 Pins

Connecting the unused pins to ground
excludes the parasitic capacitances from being
measurement.

Only CBC is measured.

Connecting only 2 pins of a multi-pin device
means that the capacitance between these
2 pins plus any other combination of
capacitances between the 2 pins
(the requested CBC, plus CBE and CCE)
will be measured !

HpotLcur Lpot Hcur

B

E

C B

E

C
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Notice: This is a very often overlooked detail when performing CV measurements: just the 2 pins are
connected to the instrument, and the measurement result is interpreted as only the capacitance between
these 2 pins, overlooking the parasitic add-on effect of the remaining capacitances.
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From the 3-Port Y-Matrix:

calculate the inter-port branch impedances:
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and the pin-to-ground impedances:
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30

Z_12
P1 P2

P3

Back to:
How to Calculate the Branch Impedances of a 3 Port

At a Glance:

-14-



 The total impedance at P1,
is 1/Y11
(P2 and P3 grounded)

Z_
10

Z_12
P1 P2

P3

and so on:
 At P2, with P1 and P3 grounded,

the total impedance is 1/Y22

 And at P3, with P1 and P2 grounded,
it is 1/Y33
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How to Calculate the Branch Impedances of a 3 Port (cont'd)

At a Glance:

1. Convert de-embedded S-parameters to Z, and strip-off the remaining external inductors.
2. To obtain the Inner PI Schematic, convert further to Y-parameters, and calculate

Z_10 = 1 / (Y.11 + Y.12) Impedance Port1 → GND
Z_12 = 1 / (-Y.12) Impedance Port1 → Port2
GM = Y.21 - Y.12 = GM • e -j • 2PI • freq • TAU Voltage → Current Amplification
Y_20 = Y.22 + Y.12 Admittance Port2 → GND

3. Finally, get RGS = REAL(Z_10) CGS = - 1 / (IMAG(Z_10) • 2PI • freq)
RGD = REAL(Z_12) CGD = - 1 / (IMAG(Z_12) • 2PI • freq)
GM = MAG(GM) TAU = - PHASE(GM)  / (2PI • freq)
RDS = 1 / (REAL(Y_20)) CDS = IMAG(Y_20)  / (2PI • freq)

... and another Y-Matrix Application Example:

MOS/MESFET/HEMT: Transistor Inner PI Schematic Modeling

CGD   RGD

RDS

CDS

vGS •Gm

vGS

CGS

RGS

quasistatic  approach
Note: if the values of the off-stripped external inductors
are correct, the inner-PI schematic components become
frequency-independent. Only DC bias dependent.

This corresponds to the frequency independence of the
inner-PI components of models like EEHEMT, Angelov,
ASM-HEMT and also of the MOS models.
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The Inner-PI-Modeling is the most detailed interpretation of Y-Parameters for transistors with negligible or
stripped-off RG. Therefore, it works best for MOS, MESFETs and HEMTs.
In addition, as described above, it can also be applied to identify the values of the external inductors.



S-Parameters

vg,vd
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Inner PI
Component
Results:

with accurately
subtracted
external inductors

... and another Y-Matrix Application Example:

MOS/MESFET/HEMT: Transistor Inner PI Schematic Modeling

vg,vd

vg,vd

vg,vd

vg,vd

vg,vd

vg,vd

vg,vd

measured
modeled

A typical measurement verification result, with correctly stripped-off external inductors: only very little
dependency of the Inner-PI-schematic components versus frequency.

Back to Top



Impedance Matrix

Definition:


























2

1

2221

1211

2

1
i
i

*
ZZ
ZZ

v
v

stimulatedmeasured

i2i1 v1

Z Matrix
Port1 Port2 v2v v

IMPEDANCE  MATRIX
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The Impedance or Z-Matrix is stimulated by a current at each port, and the voltages are measured.

Z11 = v1/i1 @i2=0
= Input Impedance with Port2 OPEN

Z22 = v2/i2 @i1=0
= Output Impedance with Port1 OPEN
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Important Z-Matrix Elements:

Application: Verification of Passive Components Modeling
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Z-Matrix Application Example:
De-Embedding of the SHORT Dummy
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applying the Z-Matrix of a TEE

Z3

Z1 Z2

TEE Schematic:

... where is the DUT located in the SHORT Dummy's TEE schematic  ?

During S-Parameter de-embedding, everybody applies a TEE schematic for the SHORT Dummy off-stripping.
Obviously, the DUT is replaced by the middle connection point of the three impedances. Let's see how to
proof this.
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The Chain of Z-Matrices:
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De-Embedding applied:

Z-Matrix Application Example:
De-Embedding of the SHORT Dummy

Z3

Z1 Z2

TEE Schematic:

applying the Z-Matrix of a TEE

The DUT is located at the inner node (!) of the SHORT Dummy's TEE Schematic, because the mathematical
commutative law states that the addition of matrices is independent of the sequence. This combines ZLines

and ZGround to ZTEE.
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Hybrid Matrix
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Definition:

Important H-Matrix Elements:
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Application:
BetaAC Modeling of HBT and Bipolar Transistors

H21 =  i2/i1 @v2=0
=  Current Amplification with Port2 SHORTED
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Chain Matrix
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also called ABCD,

Cascade or Chain Matrix
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mind the direction of the i2 current flow !
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i2: out of the TwoPort !!
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Definition:

Notes /1/:
For reciprocal networks: A11*A22-A12*A21 = 1
For symmetrical networks: A11 = A22
For reciprocal and lossless networks, A11 and A22 are purely real, while A12 and A21 are purely imaginary.

/1/: Matthaei, Young, Jones, "Microwave Filters, Impedance-Matching Networks and Coupling Structures",
McGraw-Hill, 1964
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Important A-Matrix Elements:

Application:   Voltage Amplification Verification for
Transistor Modeling, especially MOS and HEMT

A 11

1/A11 = v2/v1 = gm/gds
Voltage Amplification with Port2 OPEN
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i2=0 !!!

Notice:
1/A11 means v2/v1 with stimulus v2, but i2=0 !!!
To perform such a measurement, and to satisfy this condition with i2=0, Port1 has to be stimulated with v1,
and v2 is measured at the open Port2.

Back to Top



Examples of Applying the TwoPort Matrices for Verification of Spice
Modeling Fit

Example: Angelov HEMT Modeling: Y-Parameter Fit
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measured
modeled

Example: Angelov HEMT Modeling: Z-Parameter Fit
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measured
modeled



Example: Angelov HEMT Modeling: H21, 1/A11
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H21 G21 = 1/A11 = gm/gds

measured
modeled

Back to Top



Wrap-Up

In a Nut Shell:
Circuit Characteristics Directly from Z, Y, H and A

Characteristics Condition Z Y H A

Input Impedance Port2 OPEN Z11
Port2 SHORTED 1/Y11

Output Impedance Port1 OPEN Z22
Port1 SHORTED 1/Y22

Trans-Conductance (gm=i2/v1) Port2 SHORTED Y21
Current Amplification i2/i1 Port2 SHORTED H21
Voltage Amplification v2/v1 = gm/gds Port2 OPEN 1/A11
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Thank You !
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