Successful Device Modeling from Impedance Plots

- A Practical Lab Note Book -

Franz Sischka, Nov. 2018 www.SisConsult.de
revised version March 2024

Outline

$>$ The Impedance Plane $\mathbf{Z}=\mathbf{R}+\mathrm{j} * \mathbf{X}$ and Typical Impedance Traces
> Impedance Plots from LCRZ Meters
> Impedance Plots from S-Parameters

The Impedance Plane $\underline{Z}=\mathbf{R}+\mathbf{j} * \mathbf{X}$

The frequency-dependent impedance locus curves (trajectories) can be measured by LCRZ meters, or obtained from S-Parameters

For 2-Port Impedances,
with increasing frequency, all impedance trajectories turn clock-wise

only the right half-plane is used (otherwise: $\mathrm{R}<0 \Omega$!!)

Impedance Examples

Ideal Resistor

Schematic:
*=============================

```
* 1 0---I_- I---0 2
```

*===============================

The impedance is represented by a single point, for all frequencies, on the x-axis of the impedance plot

Resistor and Capacitor

Schematic:

```
* Port1 0---||---| - Cs|---0 Port2
```


Impedance Plot Explanations:
freq $->0$: it's an OPEN: $Z=-j * i n f i n i t e$
freq -> infinite: Cs is a SHORT, $Z=$ Rs
in between: with increasing freq, a straight line bottom -> up to $Z=R s$

Impedance Plot Explanations:
freq $->0: C p$ is an OPEN, $Z=R p$
freq -> infinite: $C p$ shorts $R p(Z=0)$
in between: a half-circle turning from Rp clock-wise (with increasing freq) to $Z=0$

Resistors and Capacitors

Schematic:

*

Impedance Plot Explanations:
freq -> 0: it's an OPEN: $Z=-j * i n f i n i t e$
freq $->$ infinite: Cs and Cp are SHORTs, $\mathrm{Z}=0$
in between:
if $\mathrm{Cs} \gg \mathrm{Cp}$: with increasing freq,
a straight line bottom \rightarrow up to $Z=R p$,
then turing to $Z=0$ by a half-circle
if $\mathrm{Cs} \ll \mathrm{Cp}$: with increasing freq,
a straight line bottom $\rightarrow>$ up to $Z=R p$,

Resistor and Inductor

Typical Impedance Traces

Schematic:

Impedance Plot Explanations:
freq ->0: Ls is a SHORT: $Z=$ Rs
freq -> infinite: Ls is an OPEN, $Z=j *$ infinite
in between: with increasing freq, a straight line bottom $->$ up from $Z=R s$ to $j *$ infinite

Resistors and Inductors

Schematic:

*===12

* Note: this schematic is typical for spiral inductors * incl. skin effect
* $===1$

Impedance Plot Explanations:
freq $\rightarrow 0$: Lp and Ls are both SHORTs: $Z=0$
freq $->$ infinite: $L S$ is an OPEN, and $L p$ too: $Z=j^{*}$ infinite in between: for typically $L p>$ Ls: first Lp becomes an OPEN, while L s is still a SHORT: half-circle from $Z=0$ to $Z=R p$.
With higher freq, Ls becomes an OPEN too: new end point: $Z=R p+j *$ infinite

Schematic:

Impedance Plot Explanations:
freq $->0$: Lp shorts Rp: $Z=R s$
freq -> infinite: $L p$ is an OPEN: $Z=R s+R p$
in between: a half-circle turning from Rs clock-wise (with increasing freq) to $Z=R s+R p$

Resonance Circuits

Typical Impedance Traces

Schematic:
*===1
$*$

* Port1 $0--\frac{\mid}{\text { * }} \left\lvert\, \begin{gathered}\text { Rs } \\ \text { * }\end{gathered}\right.$

Impedance Plot Explanations:
freq ->0:Cs is an OPEN: $Z=-j *$ infinite
freq $->$ infinite: $L s$ is an OPEN: $Z=j * i n f i n i t e$
-in between: resonance: $Z=R s$
with increasing freq, a straight line bottom $->$ up from $Z=-j *$ infinite, towards $Z=R s$ (resonance), and the further up to $Z=j^{*}$ infinite

Schematic:

Impedance Plot Explanations: freq $\rightarrow 0$: $L p$ is a SHORT, $Z=0$ resonance: the x-axis is crossed at $R p$ freq -> infinite: $C p$ is a SHORT, $Z=R p$

Outline

$>$ The Impedance Plane $\mathbf{Z}=\mathbf{R}+\mathrm{j} \star \mathrm{X}$ and Typical Impedance Traces
> Impedance Plots from LCRZ Meters
> Impedance Plots from S-Parameters

LCRZ Meters

Measure the Frequency-Dependent Impedance, with swept DC Bias.

Dependent on the settings, this impedance is then converted into

and, usually, only the capacitance of the Resistor//Capacitor interpretation
is applied to modeling

The real world, however, is the measured, complex Impedance, while a CV measurement curve is just its projection to the y-axis

$>$ *all* physical capacitors also exhibit a loss, the dissipation factor.
This shows up like a resistor in series to a capacitor.
In an Impedance Plot, this means a shift of the impedance curve to the right.
$>$ when modeling *just the capacitor*,
i.e. the projection of the reality to the y-axis,
you will certainly get a fit,
but the model may not be the correct, physical one.

How to Read Capacitance and Parallel Resistor out of an Impedance \mathbf{Z} Measurement:

$$
Y=\operatorname{REAL}(Y)+j \cdot \operatorname{IMAG}(Y)=\frac{1}{R p}+j \cdot \omega \cdot C p
$$

$j \cdot \operatorname{IMAG}(Y)=j \cdot \omega \cdot C p$

$\mathrm{CP}(\mathrm{v}) @ 1 \mathrm{MHz}$

And ...
How to Read Capacitance and Series Resistor (Dissipation Factor of Capacitor) out of an Impedance \mathbf{Z} Measurement:

```
|<------ Z ------>>
O---|
```

$$
Z=\operatorname{REAL}(Z)+j \cdot \operatorname{IMAG}(Z)=R s+\frac{1}{j \cdot \omega \cdot C s}
$$

$$
\begin{aligned}
& \mathrm{Rs}=\operatorname{REAL}(Z) \\
& j \cdot \operatorname{IMAG}(Z)=\frac{1}{j \cdot \omega \cdot C s}=\frac{-j}{\omega \cdot C s} \\
& \mathrm{Cs}=\frac{-1}{\omega \cdot \operatorname{IMAG}(Z)}
\end{aligned}
$$

Practical Aspects of Impedance Analyzer Measurements

Impedance Plot 20 FF Electrolyte Capacitor

The Basic Impedance Analyzer Measurement Principle

Impedance Analyzer Calibration

The impedances of two Calibration Standards are measured first
> OPEN Cal. Standard measurement

Impedance Analyzer Calibration

The impedances of two Calibration Standards are measured first
> OPEN Cal. Standard measurement
$>$ SHORT Cal. Standard measurement

With Z_open and Z_short known, the DUT impedance can be calculated from Z_total

OPEN-only Calibration:

Z_dut = (Z_open*Z_total) / (Z_open - Z_total)

OPEN-SHORT Calibration:

Z_dut = (Z_short - Z_total) // (Z_total - Z_open) * Z_open

Pre-Requisite:
the equivalent schematic of test fixture and cables must be symmetrical.

In Practice:
not too long cables, good connectors

Meas. and Simul. Principle of LCRZ Meters for Multi-Port Devices:

> stimulate voltage at one port
$>$ measure the current at the other port
$>$ connect not-involved nodes to ground
and as a result,
> parasitics at each port to ground are not included in measurement result !

SisConsult

Outline

$>$ The Impedance Plane $\mathbf{Z}=\mathbf{R}+\mathrm{j} \star \mathrm{X}$ and Typical Impedance Traces
> Impedance Plots from LCRZ Meters
> Impedance Plots from S-Parameters

Impedance Plots can also be obtained from S-Parameter Measurements

Calculating 1-Port S-Parameters from 2-Port:

Viewed from Port1, with Port2 shorted:

$$
\text { S_1Port }=\text { S11- } \frac{\mathrm{S} 12 \cdot \mathrm{~S} 21}{1+\mathrm{S} 22}
$$

$$
\text { S_1Port }=\text { S22 }-\frac{\mathrm{S} 12 \cdot \mathrm{~S} 21}{1+\mathrm{S} 11}
$$

Interpreting Two-Port S-Parameter Measurements by a PI Schematic

$$
\begin{aligned}
& S \text { matrix }=\left(\begin{array}{ll}
\mathrm{S} .11 & \mathrm{~S} .12 \\
\mathrm{~S} .21 & \mathrm{~S} .22
\end{array}\right) \\
& \mathrm{Y} \text { matrix }=\left(\begin{array}{ll}
\mathrm{S} .21 & \mathrm{~S} .22
\end{array}\right) \quad \text { and calculate the impedanc } \\
& \frac{1}{\mathrm{Y} .11+\mathrm{Y} .12}=\mathrm{Z} 10 \\
& -\frac{1}{\mathrm{Y} .12}=\mathrm{Z} 12 \\
& \frac{1}{Y .22+Y .21}=Z 20
\end{aligned}
$$

Assuming an underlaying PI schematic for the DUT, convert the de-embedded S-parameters to Y -parameters,

A Special Case: Transistor PI Schematic Modeling

The Idea

几 $1 \rightarrow{ }^{2}$ Convert the S-Parameter Matrix

- to a Y Matrix,
- and apply the PI Schematic Interpretation for Transistor Modeling

$$
\begin{aligned}
& \left(\begin{array}{cc}
Y 11 & Y 12 \\
Y 21 & Y 22
\end{array}\right)=\left(\begin{array}{cc}
Y g s+Y g d & -Y g d \\
Y g m-Y g d & Y d s+Y g d
\end{array}\right) \\
& Y g s=Y 11+Y 12 \\
& Y g d=-Y 12 \\
& Y g m=Y 21-Y 12=g m * \exp (-j \omega T A U) \\
& Y d s=Y 22+Y 12
\end{aligned}
$$

17 A Best-Practice Intermediate Step:
Inspect/Verify First the PI-Schematic Impedances

How to Get the Inner PI Components for Quasistatic HEMT or MOSFET

1. Convert de-embedded S-parameters to Z, and strip-off external inductors and resistors
2. Convert to Y-parameters and calculate complex impedances, admittances and Gm

$$
\begin{array}{ll}
\mathrm{Z}_{-1} 10=(\mathrm{Y} .11+\mathrm{Y} .12)^{-1} & \text { Impedance Port1 }->\text { GND } \\
\mathrm{Z}_{1}=(-\mathrm{Y} .12)^{-1} & \text { Impedance Port1 }->\text { Port2 } \\
\mathrm{Gm}=\mathrm{Y} .21-\mathrm{Y} .12=\mathrm{GM} \cdot \mathrm{e}^{-\mathrm{j} \cdot 2 \mathrm{PI} \cdot \text { freq } \cdot \mathrm{TAU}} & \text { Voltage }->\text { Current Amplific } \\
\mathrm{Y} _20=\mathrm{Y} .22+\mathrm{Y} .12 & \\
\text { Admittance Port2 }->\mathrm{GND}
\end{array}
$$

3. Finally, get

$$
\begin{array}{ll}
\text { RGS }=\operatorname{REAL}\left(Z _10\right) & \text { CGS }=-\left(\operatorname{IMAG}\left(Z _10\right)^{-1}\right) /(2 \mathrm{PI} \cdot \text { freq }) \\
\text { RGD }=\operatorname{REAL}\left(Z _12\right) & \text { CGD }=-\left(\operatorname{IMAG}\left(Z _12\right)^{-1}\right) /(2 P I \cdot \text { freq }) \\
G M=\operatorname{MAG}(G m) & \text { TAU }=-\operatorname{PHASE}(\mathrm{Gm}) /(2 P I \cdot \text { freq }) \\
\text { RDS }=\left(\operatorname{REAL}\left(Y _20\right)\right)^{-1} & \text { CDS }=\operatorname{IMAG}\left(Y _20\right) /(2 P I \cdot \text { freq })
\end{array}
$$

S-Parameter

SisConsult

Calculating the Branch-to-Branch

Impedances of Multi-Ports

$>$ The Y -matrix relates the currents into the ports with the stimulating port voltages.
$>$ The matrix elements unit is admittance.

The Y-matrix is very useful when the impedances between the ports need to be extracted and analyzed, especially for multi-port applications. This is due to the voltage stimulation at the ports.

股 all voltages, except the one at port A, have to be set to zero.
Then, the current for the impedance calculation is not measured at this port A, but rather at port B.

Of course, all other shorted ports do also sink currents, provided by the voltage source at port A , but they are not involved in the port B current measurement.

I慨 In other words,
the impedance Z, between port A and the shorted port B, is simply $\quad Z_{B A}=-\frac{1}{Y_{B A}}$

How to Calculate the Branch Impedances of a 3 Port

Example:

Port1-to-Port2-Impedance Z12

From an inspection of
the 3-Port Y-Matrix definition:

$$
\left(\begin{array}{l}
i_{1} \\
i_{2} \\
i_{3}
\end{array}\right)=\left(\begin{array}{lll}
Y_{11} & Y_{12} & Y_{13} \\
Y_{21} & Y_{22} & Y_{23} \\
Y_{31} & Y_{32} & Y_{33}
\end{array}\right) \cdot\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)
$$

apply a SHORT to Port2 and Port3, stimulate a voltage at Port1, measure the current at Port2 and calculate:

$$
\mathrm{Z} 12=\frac{\mathrm{v} 1}{-\mathrm{i} 2}=-(\mathrm{Y} 21)^{-1}
$$

```
Note:
the Y-Matrix indexing is
Admittance
e.g. the admittance
from Port1 to Port2 is Y21
```


How to Calculate the Branch Impedances of a 3 Port

At a Glance:

From the 3-Port Y-Matrix:

$$
\left(\begin{array}{l}
i_{1} \\
i_{2} \\
i_{3}
\end{array}\right)=\left(\begin{array}{lll}
Y_{11} & Y_{12} & Y_{13} \\
Y_{21} & Y_{22} & Y_{23} \\
Y_{31} & Y_{32} & Y_{33}
\end{array}\right) \cdot\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)
$$

calculate the inter-port branch impedances:

$$
\begin{aligned}
& \mathrm{Z} 12=-\left(\mathrm{Y}_{12}\right)^{-1} \\
& \mathrm{Z} 13=-\left(\mathrm{Y}_{13}\right)^{-1} \\
& \mathrm{Z} 32=-\left(\mathrm{Y}_{32}\right)^{-1}
\end{aligned}
$$

and the pin-to-ground impedances:
N.왑 $Z 10=\left(Y_{11}+Y_{12}+Y_{13}\right)^{-1}$

$$
\begin{aligned}
& Z 20=\left(Y_{21}+Y_{22}+Y_{23}\right)^{-1} \\
& Z 30=\left(Y_{31}+Y_{32}+Y_{33}\right)^{-1}
\end{aligned}
$$

SisConsult

How to Calculate the Branch Impedances of a 3 Port

and so on:

At P2, with P1 and P3 grounded, the total impedance is $1 / \mathrm{Y} 22$

And at P3, with P1 and P2 grounded, it is $1 / Y 33$

Application Example: 3-Port Transformer

Wrap-Up

$>$ The Impedance Plane $\mathbf{Z}=\mathbf{R + j} \mathbf{~} \mathbf{X}$ and its interpretation is an important tool for device modeling engineers to develop accurate Spice models.
$>$ Impedance Plots can be obtained by LCRZ Meters
> and from S-Parameters of Network Analyzers

eMail: contact@SisConsult.de

