Angelov GaN Modeling

Parameter Influence
 Parameter Extraction Strategy

Outline

- Introduction to the Angelov Model
- Step-by-Step Modeling Sequence

Resistances RG, RD, RS

DC Input Characteristic ig-vgs

DC Transfer Characteristic id-vgs

DC Output Characteristic id-vds

Thermal Modeling

S-Parameter Modeling

Modeling Results

Angelov Model Circuit

Slide by courtesy of I.Angelov

-3-

CHALMERS

-4-

CHALMERS

Ids equations

$$I_{ds} = I_{pk} (1 + \tanh(\Psi_{p})) \tanh(\Gamma V_{ds}) (1 + V_{ds} + S_{sb} e^{Vdg - Vtr});$$

$$E_{p} = P_{1m} ((V_{gs} - V_{pk0}) + P_{2} (V_{gs} - V_{pks})^{2} + P_{3} (V_{gs} - V_{pkm})^{3});$$

$$P_{1m} = g_{mpk} / I_{pk};$$

 $V_{pk}(V_{ds}) = V_{pk0} + \Delta V_{pks} \tanh(r_s V_{ds}) - V_{sb2} \left(V_{dg} - V_{tr} \right)^2;$ $r = r_r + r_s [1 + \tanh(\mathbb{E}_p)]; P_{1m} = P_{1s} (1 + B_1 / \cosh(B_2 V_{ds}));$ FET Current source: The ideal case is if we can split: Ids = f1(Vgs)*f2(Vds)

High Power FET Measured&Model

-0.4

-0.2 0.0

I.Angelov

0.2 0.4

$I_{ds} = I_{dsp} - I_{dsn};$ Symmetric model $I_{dsp} = I_{pk} (1 + \tanh(\Psi_p))(1 + \tanh(\Gamma V_{ds}))(1 + V_{ds} + S_{b.e} e^{Vdg - Vtr});$ $I_{dsn} = I_{nk} (1 + \tanh(\Psi_n))(1 - \tanh(\Gamma V_{ds}))(1 - V_{ds});$ 0.06 SO 0.04 0.02 $= P_{1m}((V_{gs} - V_{pk0}) + P_2(V_{gs} - V_{pks})^2 + P_3(V_{gs} - V_{pkm})^3);$ 0.00 -0.02 -0.04 -0.06 $(\mathbf{E}_{n} = P_{1m} ((V_{gd} - V_{pk0}) + P_{2} (V_{gd} - V_{pks})^{2} + P_{3} (V_{gd} - V_{pkm})^{3});$ -1.0 -0.8 -0.6 VGS Symmetrical model $\Gamma = \Gamma_r + \Gamma_s [1 + \tanh(\mathbf{E}_n)];$ Meas.&Model

Slide by courtesy of I.Angelov

-5-

CHALMERS

Gate Charge

 Capacitance implementation $1 \rightarrow \frac{\partial V_{gs}}{\partial t}; \frac{\partial V_{gd}}{\partial t}; 2 \rightarrow I_{gs} = \frac{\partial V_{gs}}{\partial t} C_{gs}; I_{gd} = \frac{\partial V_{gd}}{\partial t} C_{gd};$ SgC $C_{gs} = C_{gsp} + C_{gs0}.(1 + \tanh[\mathbb{E}_1]).(1 + \tanh[\mathbb{E}_2])$ $\mathbb{E}_{1} = P_{10} + P_{11} \cdot V_{gs} + P_{111} \cdot V_{ds}$; $\mathbb{E}_{2} = P_{20} + P_{21} \cdot V_{ds}$; $C_{gd} = C_{gdp} + C_{gd0} \cdot (1 + \tanh[\mathbb{E}_3]) \cdot (1 + \tanh[\mathbb{E}_4] + 2P_{111})$ $\mathbb{E}_{3} = P_{30} - P_{31} \cdot V_{ds}; \mathbb{E}_{4} = P_{40} + P_{41} \cdot V_{gd} - P_{111} \cdot V_{ds};$ 8E-13 P_{111} -high voltage effects for C_{gs}&cross-coupling for C_{gd} 6E-13 pg 4E-13 2E-13 $Q_g = Q_{gs} + Q_{gd};$ Charge implementation $Q_{gs} = \int C_{gs}(V_{gs}, V_{ds}) dV_{gs} = C_{gsp} V_{gs} + C_{gs0} (V_{gs} + Lc1) Th2;$

$$Q_{gd} = \int C_{gd}(V_{gs}, V_{gd}) dV_{gd} = C_{gdp} V_{gd} + C_{gd0} (V_{gd} + Lc4) Th3;$$

$$Lc1 = \frac{\log[\cosh[\mathbb{E}_{1}]]}{P_{11}}, Tn2 = \tanh[\mathbb{E}_{2}]; Lc4 = \frac{\log[\cosh[\mathbb{E}_{4}]]}{P_{41}}, Tn3 = \tanh[\mathbb{E}_{3}]$$

Slide by courtesy of I.Angelov

I.Angelov

-6-

Outline

- > Introduction to the Angelov Model
- Step-by-Step Modeling Sequence

Resistances RG, RD, RS

DC Input Characteristic ig-vgs

DC Transfer Characteristic id-vgs

DC Output Characteristic id-vds

Thermal Modeling

S-Parameter Modeling

Modeling Results

Angelov Modeling Flow:

- -1- RS, RD
- -2- ig(vg)
- -3- id(vg)
- -4- id(vd)
- -5- S-parameters: RG, Inductors

capacitors from vd-vd and vd-vg biasing

-6- Nonlin-RF: fine-tuning & verification

Resistances RG, RD, RS

As a best-practice, the external resistors values are extracted applying different extraction methods.

FROM DC:

- RD from id-vd linear range
- RS from id-vd: distribution of id curves for vd in saturation or from DC Flyback measurement

FROM S-PARAMETERS:

> RS, RG, RD from ColdFET (Dambrine*)

Once these resistors are modeled, and during the remaining modeling steps:

- RS should be changed only very little
- RG will be tuned to fit S11
- RD will be tuned to fit id-vd in the linear range

* G.Dambrine et.al., 'A New Method for Determining the FET Small-Signal Equivalent Circuit', IEEE Trans.Microwave Theory and Techniques, vol.36, nr.7, July 1988

2	Step-by-Step Modeling Sequence	
	Resistances RG, RD, RS	
	DC Input Characteristic	ig-vgs
	DC Transfer Characteristic	id-vgs
	DC Output Characteristic	id-vds
	Thermal Modeling	
	S-Parameter Modeling	

DC Input Characteristic

ig vs. vg

7	Step-by-Step Modeling Sec	uence
	Resistances RG, RD, RS	
	DC Input Characteristic	ig-vgs
	DC Transfer Characteristic	id-vgs
	DC Output Characteristic	id-vds
	Thermal Modeling	
	S-Parameter Modeling	

DC Transfer Characteristic id vs. vg

LOG(id) vs.vg

id vs. vgs Effect of vds

7	Step-by-Step	Modeling	Sequence
-	otep-by-otep	modeling	ocquence

Resistances RG, RD, RS

DC Input Characteristic

DC Transfer Characteristic id-vgs

DC Output Characteristic id-vds

ig-vgs

Thermal Modeling

S-Parameter Modeling

DC Output Characteristic id vs. vd

id_vds 80 60 40 -20 2 4 6 8 10 0 vd [E+0]

۶	Step-by-Step Modeling Sequence	
	Resistances RG, RD, RS	
	DC Input Characteristic	ig-vgs
	DC Transfer Characteristic	id-vgs
	DC Output Characteristic	id-vds
	Thermal Modeling	
	S-Parameter Modeling	

thermo-electrical circuit for the self-heating modeling

A Note on Thermal Modeling

Device Temperature Rise T= RTH * Dissipated_Power

Device Temperature $T_{Dev} = TEMP +$ Т

CTH models the thermal storage

Usually: RTH * CTH = 1ms

If you don't know CTH, set CTH = 1E-3 / RTH Never set CTH=0 !!! Otherwise, your model is thermally faster than electrically !

4	Step-by-Step Modeling Sec	uence
	Resistances RG, RD, RS	
	DC Input Characteristic	ig-vgs
	DC Transfer Characteristic	id-vgs
	DC Output Characteristic	id-vds
	Thermal Modeling	

S-Parameter Modeling

S-Parameter Modeling

5

Full AC Schematic

Note: Vgsc and Vgdc are the internal node control voltages for the bias-dependent capacitances **Cgs** and **Cgd**

Simplified Inner PI AC Schematic

RG

Adjust the extrinsic inductors LG, LD and LS to make intrinsic parameters as freq. independent as possible

For details, see next slide

External Inductors

MD 100

GM_AC.target

50

ر التعق

5

10

15

freq [E+9]

20

25

30

20

25

30

60

40

20

0

5

10

15

freq [E+9]

CDS.target

(and also RG, but keep an eye on simulated S11!) to make the intrinsic parameters as freq. independent as possible

Note: RD and RS have been fitted in DC id-vd

CGD @ vg 1st sweep vd 2nd sweep

CGD

@ vd 1st sweep
 vg 2nd sweep

TAU @ vg 1st sweep vd 2nd sweep

Outline

- > Introduction to the Angelov Model
- Step-by-Step Modeling Sequence

Resistances RG, RD, RS

DC Input Characteristic ig-vgs

DC Transfer Characteristic id-vgs

DC Output Characteristic id-vds

Thermal Modeling

S-Parameter Modeling

Modeling Results

DC Modeling Result

Model Robustness Check

measurements extended simulation range

S-Parameter Modeling Result

Stability K-Factor Check

$$\Delta = S_{11} \cdot S_{22} - S_{12} \cdot S_{21}$$
$$K = \frac{1 - |S_{11}|^2 - |S_{22}|^2 + |\Delta|^2}{2 \cdot |S_{21} \cdot S_{12}|}$$

The Stability Factor K, together with its determinant Δ part, are a good measure to check the fitting of simulated to measure data of all four S-parameters, in a single plot.

eMail: franz.sischka@SisConsult.de