

TwoPort Matrices and their Impact on Device Measurements and Modeling

Abstract

: With the introduction of the S-parameters in the 1960s, the two-port theory of the 1920ies gained an important application also in the high-frequency range, since it is able to separate the netlist components from the overall measurements. This is a property that S-parameters alone do not provide.

Z, Y, H, A matrices, calculated from S-parameters, contribute to the accuracy of measurements and device modeling in terms of de-embedding, device modeling and verification of the achieved fit.

This paper presents a summary of relevant relationships, applications and best practices for these matrices.
Keywords:
TwoPort Matrix Definitions, Important Matrix Elements for Device Modeling,

Contents:

A Bit of History2
Overview Matrix Conversions 4
Admittance Matrix 6
Impedance Matrix 12
Hybrid Matrix 14
Chain Matrix 15
Examples of Applying the TwoPort Matrices for Verification of Spice Modeling Fit 16
Wrap-Up 18

A Bit of History

The classical, linear Two-Port Theory relates input and output currents and voltages by linear matrix operations.
For example, for the Z matrix, the Two-Port is stimulated by a current source into each port, and the voltages at the ports are measured.
For the Y matrix, the stimulation is by a voltage source at each of the ports, and the currents into the ports are measured.

NOTICE:

CAUTION: the Y -matrix is not defined for an impedance-to-ground-only Two-Port like this:

and the Z-matrix is not defined for a series-impedance-only Two-Port like this:

In the industry, measuring S-Parameters began in the 1960ies, mainly supported by Hewlett-Packard and the introduction of its Network Analyzers. Corresponding publications appeared in the HP Technical Journal, and also by Application Notes. Above, on the right, is a screenshot of the 1967 HP Application Note 95-1.
In 1997, this highly recommendable Application Note has been completely updated by HP, covering SParameters from introduction up to expert level.
It is available at
http://www.agilent.com/find/eesof-an95-1 (as of Dec.2020).

Overview Matrix Conversions

CONVERTING THE EASY-TO-MEASURE S-PARAMETERS TO CLASSICAL MATRICES

$\underline{\mathbf{s}}$ to $\underline{\underline{Z}}$ Matrix Conversion:

$$
\underline{Z}=Z_{0} \cdot \frac{E+\underline{S}}{E-\underline{S}}
$$

\underline{Z} to $\underline{\mathbf{S}}$ Matrix Conversion:

$$
\underline{S}=\frac{\underline{Z}-Z_{0} \cdot E}{\underline{Z}+Z_{0} \cdot E}
$$

$$
\underline{Z}=\left(\begin{array}{ccc}
z_{11} & . . & z_{\mathbb{N}} \\
. . & \ddots & . . \\
z_{\mathrm{M} 1} & . . & z_{\mathrm{MN}}
\end{array}\right)
$$

S to \underline{Y} Matrix Conversion:

$$
\begin{equation*}
\underline{Y}=\frac{\mathrm{E}-\underline{\mathrm{S}}}{\mathrm{Z}_{0} \cdot(\mathrm{E}+\underline{\mathrm{S}})} \tag{j}
\end{equation*}
$$

$$
\underline{S}=\left(\begin{array}{ccc}
S_{11} & . . & S_{1 \mathbb{N}} \\
. . & \ddots & . . \\
S_{M 1} & . . & S_{M N}
\end{array}\right)
$$

$$
\underline{Y}=\left(\begin{array}{ccc}
Y_{11} & . . & Y_{\mathbb{N}} \\
. . & \ddots & . . \\
Y_{M 1} & . . & Y_{M N}
\end{array}\right)
$$

$\underline{\mathbf{Y}}$ to \mathbf{S} Matrix Conversion:

$$
\underline{S}=\frac{E-Z_{0} \cdot \underline{Y}}{E+Z_{0} \cdot \underline{Y}}
$$

\underline{Z} to \underline{Y} Matrix Conversion: $\underline{Y}=1 / \underline{Z}$
\underline{Y} to \underline{Z} Matrix Conversion:
$\underline{Z}=1 / \underline{Y}$

Pre-Requisite:

- Z_{0}, the characteristic impedance of the S-parameter measurement, is identical on all ports, and $Z_{0}=$ REAL

Notice:

- E is the identity matrix.

It can be calculated the easiest way from any N -Port matrix by setting it to exponential 0 : $\mathrm{E}=(\text { Any_N_Port_Matrix })^{0}$

PEL Programs for IC-CAP Users:
Path2Data="/myModel/myDut/mySetup/mySpar_Output"
!S to Z
 $Z 0=50$ tmpS = DATASET("quiet "\&VAL\$(Path2Data)) $\mathrm{E}=\mathrm{tmp} S^{\wedge} 0$!define an identity matrix tmpZ $=$ Z0* $(E+t m p S) / /(E-t m p S)$ RETURN tmpZ

```
!Z to S
!============================================
    Z0 = 50
    tmpZ = DATASET("quiet "&VAL$(Path2ZData))
    E = tmpZ^0 !define an identity matrix
    tmpS = (tmpZ-Z0*E)//(tmpZ+Z0*E)
    RETURN tmpS
!S to Y
!===========================================
    Z0 = 50
    tmpS = DATASET("quiet "&VAL$(Path2SData))
    E = tmpS^0 !define an identity matrix
    tmpY = 1//Z0*(E-tmpS)//(E+tmpS)
    RETURN tmpY
```

```
!Y to S
! ==========================================
ZO}=5
tmpY = DATASET("quiet "&VAL$(Path2YData))
E = tmpY^0 !define an identity matrix
tmpS = (E-ZO*tmpY)//(E+ZO*tmpY)
RETURN tmpS
!Z to Y
!==========================================
tmpZ = DATASET("quiet "&VAL$(Path2ZData))
    tmpY = tmpZ^-1
RETURN tmpY
```

```
IY to Z
```

IY to Z
! ==
! ==
tmpY = DATASET("quiet "\&VAL$(Path2YData))
tmpY = DATASET("quiet "&VAL$(Path2YData))
tmpZ = tmpY^-1
tmpZ = tmpY^-1
RETURN tmpZ

```
RETURN tmpZ
```


avoid some confusion

Notes About "AC-Wise Open or Shorted":

S-Parameters

are measured by Network Analyzers (NWA), within a Frequency Band.

- for Transistors and Diodes, they do not include the DC Bias (0 Hz) (but they are a function of the DC Bias !)

Z,Y,H,A Matrices,

calculated from S-Parameter Measurements, represent Device Performance for Ideal OPEN and SHORT Terminations within this frequency band.

They do not include the DC Bias either !!!
If궁 Hence: AC-Wise OPEN or SHORT

[^0]
A Walk through the Properties of the TwoPort Matrices and their Applications to Device Modeling

ADMITTANCE MATRIX

The Admittance or Y-Matrix is stimulated by a voltage at each port, and the currents are measured.

Important Y-Matrix Elements:

$$
\binom{i_{1}}{i_{2}}=\left(\begin{array}{ll}
Y_{11} & Y_{12} \\
Y_{21} & Y_{22}
\end{array}\right) *\binom{v_{1}}{v_{2}}
$$

1 = v2/i2 @v1=0
Y22 = Total Output Impedance with Port1 SHORTED

Application: Passive Components Modeling

Important Y-Matrix Elements (cont'd):

$\binom{i_{1}}{i_{2}}=\left(\begin{array}{cc}Y_{11} & Y_{12} \\ Y_{21} & Y_{22}\end{array}\right) *\binom{V_{1}}{V_{2}}$

Applications:
Passive Components
Modeling
$\rightarrow-\frac{1}{\mathrm{Y} 21}=\mathrm{v} 1 /(-\mathrm{i} 2) @ \mathrm{Imp2=} \mathrm{c}=0$

Two More Y-Matrix Application Examples:

> Impedance Measurements of Multi-Ports $>$ Transistor Inner PI Schematic Modeling
\qquad

Notes:
$>$ Compare the Y -Matrix indexing with the S-Parameter indexing:
S21: transmission from Port1 to Port2

A quick intermezzo:

$>$ Notice: This is a very often overlooked detail when performing CV measurements: just the 2 pins are connected to the instrument, and the measurement result is interpreted as only the capacitance between these 2 pins, overlooking the parasitic add-on effect of the remaining capacitances.

Back to:
 How to Calculate the Branch Impedances of a 3 Port

At a Glance:

From the 3-Port Y-Matrix:
$\left(\begin{array}{l}i_{1} \\ i_{2} \\ i_{3}\end{array}\right)=\left(\begin{array}{lll}Y_{11} & Y_{12} & Y_{13} \\ Y_{21} & Y_{22} & Y_{23} \\ Y_{31} & Y_{32} & Y_{33}\end{array}\right) \cdot\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right)$
calculate the inter-port branch impedances:

$$
\begin{aligned}
& Z_{-} 12=-\left(Y_{12}\right)^{-1} \\
& Z_{-} 13=-\left(Y_{13}\right)^{-1} \\
& Z_{-} 32=-\left(Y_{32}\right)^{-1}
\end{aligned}
$$

and the pin-to-ground impedances

$$
\begin{aligned}
& Z_{-} 10=\left(Y_{11}+Y_{12}+Y_{13}\right)^{-1} \\
& Z_{-2} 20=\left(Y_{21}+Y_{22}+Y_{23}\right)^{-1} \\
& Z_{-} 30=\left(Y_{31}+Y_{32}+Y_{33}\right)^{-1}
\end{aligned}
$$

SisConsult

. and another Y-Matrix Application Example:
 MOS/MESFET/HEMT: Transistor Inner PI Schematic Modeling

1. Convert de-embedded S-parameters to Z, and strip-off the remaining external inductors.
2. To obtain the Inner PI Schematic, convert further to Y-parameters, and calculate

The Inner-PI-Modeling is the most detailed interpretation of Y-Parameters for transistors with negligible or stripped-off RG. Therefore, it works best for MOS, MESFETs and HEMTs.
In addition, as described above, it can also be applied to identify the values of the external inductors.

A typical measurement verification result, with correctly stripped-off external inductors: only very little dependency of the Inner-PI-schematic components versus frequency.

Back to Top

IMPEDANCE MATRIX

Definition:

$$
\binom{v_{1}}{v_{2}}=\left(\begin{array}{ll}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{array}\right) *\binom{i_{1}}{i_{2}}
$$

[1P
SisConsult

The Impedance or Z-Matrix is stimulated by a current at each port, and the voltages are measured.

Important Z-Matrix Elements:

$$
\binom{v_{1}}{v_{2}}=\left(\begin{array}{ll}
z_{11} & z_{12} \\
z_{21} & z_{22}
\end{array}\right) *\binom{i_{1}}{i_{2}}
$$

Application: Verification of Passive Components Modeling

Z-Matrix Application Example:

De-Embedding of the SHORT Dummy applying the Z-Matrix of a TEE
... where is the DUT located in the SHORT Dummy's TEE schematic ?

During S-Parameter de-embedding, everybody applies a TEE schematic for the SHORT Dummy off-stripping. Obviously, the DUT is replaced by the middle connection point of the three impedances. Let's see how to proof this.

The DUT is located at the inner node (!) of the SHORT Dummy's TEE Schematic, because the mathematical commutative law states that the addition of matrices is independent of the sequence. This combines $Z_{\text {Lines }}$ and $\mathrm{Z}_{\text {Ground }}$ to $\mathrm{Z}_{\text {TEE }}$.

HYBRID MATRIX

Important H-Matrix Elements:

$\binom{\mathrm{v}_{1}}{\mathrm{i}_{2}}=\left(\begin{array}{ll}\mathrm{H}_{11} & H_{12} \\ \mathrm{H}_{21} & H_{22}\end{array}\right) *\binom{\dot{I}_{1}}{v_{2}}$

Application:
Beta $_{\text {AC }}$ Modeling of HBT and Bipolar Transistors

Back to Top

Notes /1/:
For reciprocal networks: \quad A11*A22-A12*A21 $=1$
For symmetrical networks: A11 = A22
For reciprocal and lossless networks, A11 and A22 are purely real, while A12 and A21 are purely imaginary.
/1/: Matthaei, Young, Jones, "Microwave Filters, Impedance-Matching Networks and Coupling Structures", McGraw-Hill, 1964

Important A-Matrix Elements:

$$
\binom{v_{1}}{i_{1}}=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right) *\binom{v_{2}}{i_{2}}
$$

Application: Voltage Amplification Verification for Transistor Modeling, especially MOS and HEMT
\square SisConsult $\quad{ }^{-25-}$

Notice:
1/A11 means v2/v1 with stimulus v2, but i2=0 !!!
To perform such a measurement, and to satisfy this condition with $i 2=0$, Port1 has to be stimulated with $v 1$, and $v 2$ is measured at the open Port2.

Back to Top

Examples of Applying the TwoPort Matrices for Verification of Spice Modeling Fit

Example: Angelov HEMT Modeling: Z-Parameter Fit

Example: Angelov HEMT Modeling: H21, 1/A11

Back to Top

Wrap-Up

In a Nut Shell:

Circuit Characteristics Directly from Z, Y, H and A

Back to Top

[^0]: Back to Top

